direct product, metabelian, nilpotent (class 2), monomial, 2-elementary
Aliases: C3×C23.78C23, (C2×C12)⋊8Q8, C6.38(C4⋊Q8), C6.93C22≀C2, (C2×C12).308D4, C22.71(C6×D4), (C22×Q8).9C6, C22.21(C6×Q8), C6.88(C22⋊Q8), C23.82(C22×C6), C2.C42.11C6, (C22×C6).459C23, (C22×C12).403C22, (C2×C4)⋊1(C3×Q8), C2.4(C3×C4⋊Q8), (C2×C4⋊C4).9C6, (C6×C4⋊C4).38C2, (Q8×C2×C6).12C2, (C2×C4).15(C3×D4), C2.7(C3×C22⋊Q8), C2.7(C3×C22≀C2), (C2×C6).611(C2×D4), (C2×C6).109(C2×Q8), (C22×C4).26(C2×C6), C22.38(C3×C4○D4), (C2×C6).219(C4○D4), (C3×C2.C42).27C2, SmallGroup(192,828)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×C23.78C23
G = < a,b,c,d,e,f,g | a3=b2=c2=d2=1, e2=f2=g2=b, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, bd=db, fef-1=be=eb, bf=fb, bg=gb, cd=dc, geg-1=ce=ec, cf=fc, cg=gc, de=ed, gfg-1=df=fd, dg=gd >
Subgroups: 282 in 182 conjugacy classes, 86 normal (14 characteristic)
C1, C2, C2, C3, C4, C22, C22, C6, C6, C2×C4, C2×C4, Q8, C23, C12, C2×C6, C2×C6, C4⋊C4, C22×C4, C22×C4, C2×Q8, C2×C12, C2×C12, C3×Q8, C22×C6, C2.C42, C2×C4⋊C4, C22×Q8, C3×C4⋊C4, C22×C12, C22×C12, C6×Q8, C23.78C23, C3×C2.C42, C6×C4⋊C4, Q8×C2×C6, C3×C23.78C23
Quotients: C1, C2, C3, C22, C6, D4, Q8, C23, C2×C6, C2×D4, C2×Q8, C4○D4, C3×D4, C3×Q8, C22×C6, C22≀C2, C22⋊Q8, C4⋊Q8, C6×D4, C6×Q8, C3×C4○D4, C23.78C23, C3×C22≀C2, C3×C22⋊Q8, C3×C4⋊Q8, C3×C23.78C23
(1 109 105)(2 110 106)(3 111 107)(4 112 108)(5 192 188)(6 189 185)(7 190 186)(8 191 187)(9 17 13)(10 18 14)(11 19 15)(12 20 16)(21 29 25)(22 30 26)(23 31 27)(24 32 28)(33 41 37)(34 42 38)(35 43 39)(36 44 40)(45 53 49)(46 54 50)(47 55 51)(48 56 52)(57 65 61)(58 66 62)(59 67 63)(60 68 64)(69 77 73)(70 78 74)(71 79 75)(72 80 76)(81 89 85)(82 90 86)(83 91 87)(84 92 88)(93 102 98)(94 103 99)(95 104 100)(96 101 97)(113 121 117)(114 122 118)(115 123 119)(116 124 120)(125 133 129)(126 134 130)(127 135 131)(128 136 132)(137 145 141)(138 146 142)(139 147 143)(140 148 144)(149 157 153)(150 158 154)(151 159 155)(152 160 156)(161 169 165)(162 170 166)(163 171 167)(164 172 168)(173 181 177)(174 182 178)(175 183 179)(176 184 180)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)(65 67)(66 68)(69 71)(70 72)(73 75)(74 76)(77 79)(78 80)(81 83)(82 84)(85 87)(86 88)(89 91)(90 92)(93 95)(94 96)(97 99)(98 100)(101 103)(102 104)(105 107)(106 108)(109 111)(110 112)(113 115)(114 116)(117 119)(118 120)(121 123)(122 124)(125 127)(126 128)(129 131)(130 132)(133 135)(134 136)(137 139)(138 140)(141 143)(142 144)(145 147)(146 148)(149 151)(150 152)(153 155)(154 156)(157 159)(158 160)(161 163)(162 164)(165 167)(166 168)(169 171)(170 172)(173 175)(174 176)(177 179)(178 180)(181 183)(182 184)(185 187)(186 188)(189 191)(190 192)
(1 9)(2 10)(3 11)(4 12)(5 103)(6 104)(7 101)(8 102)(13 105)(14 106)(15 107)(16 108)(17 109)(18 110)(19 111)(20 112)(21 113)(22 114)(23 115)(24 116)(25 117)(26 118)(27 119)(28 120)(29 121)(30 122)(31 123)(32 124)(33 125)(34 126)(35 127)(36 128)(37 129)(38 130)(39 131)(40 132)(41 133)(42 134)(43 135)(44 136)(45 137)(46 138)(47 139)(48 140)(49 141)(50 142)(51 143)(52 144)(53 145)(54 146)(55 147)(56 148)(57 151)(58 152)(59 149)(60 150)(61 155)(62 156)(63 153)(64 154)(65 159)(66 160)(67 157)(68 158)(69 163)(70 164)(71 161)(72 162)(73 167)(74 168)(75 165)(76 166)(77 171)(78 172)(79 169)(80 170)(81 175)(82 176)(83 173)(84 174)(85 179)(86 180)(87 177)(88 178)(89 183)(90 184)(91 181)(92 182)(93 187)(94 188)(95 185)(96 186)(97 190)(98 191)(99 192)(100 189)
(1 149)(2 150)(3 151)(4 152)(5 148)(6 145)(7 146)(8 147)(9 59)(10 60)(11 57)(12 58)(13 63)(14 64)(15 61)(16 62)(17 67)(18 68)(19 65)(20 66)(21 71)(22 72)(23 69)(24 70)(25 75)(26 76)(27 73)(28 74)(29 79)(30 80)(31 77)(32 78)(33 83)(34 84)(35 81)(36 82)(37 87)(38 88)(39 85)(40 86)(41 91)(42 92)(43 89)(44 90)(45 95)(46 96)(47 93)(48 94)(49 100)(50 97)(51 98)(52 99)(53 104)(54 101)(55 102)(56 103)(105 153)(106 154)(107 155)(108 156)(109 157)(110 158)(111 159)(112 160)(113 161)(114 162)(115 163)(116 164)(117 165)(118 166)(119 167)(120 168)(121 169)(122 170)(123 171)(124 172)(125 173)(126 174)(127 175)(128 176)(129 177)(130 178)(131 179)(132 180)(133 181)(134 182)(135 183)(136 184)(137 185)(138 186)(139 187)(140 188)(141 189)(142 190)(143 191)(144 192)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)(129 130 131 132)(133 134 135 136)(137 138 139 140)(141 142 143 144)(145 146 147 148)(149 150 151 152)(153 154 155 156)(157 158 159 160)(161 162 163 164)(165 166 167 168)(169 170 171 172)(173 174 175 176)(177 178 179 180)(181 182 183 184)(185 186 187 188)(189 190 191 192)
(1 127 3 125)(2 126 4 128)(5 170 7 172)(6 169 8 171)(9 35 11 33)(10 34 12 36)(13 39 15 37)(14 38 16 40)(17 43 19 41)(18 42 20 44)(21 47 23 45)(22 46 24 48)(25 51 27 49)(26 50 28 52)(29 55 31 53)(30 54 32 56)(57 83 59 81)(58 82 60 84)(61 87 63 85)(62 86 64 88)(65 91 67 89)(66 90 68 92)(69 95 71 93)(70 94 72 96)(73 100 75 98)(74 99 76 97)(77 104 79 102)(78 103 80 101)(105 131 107 129)(106 130 108 132)(109 135 111 133)(110 134 112 136)(113 139 115 137)(114 138 116 140)(117 143 119 141)(118 142 120 144)(121 147 123 145)(122 146 124 148)(149 175 151 173)(150 174 152 176)(153 179 155 177)(154 178 156 180)(157 183 159 181)(158 182 160 184)(161 187 163 185)(162 186 164 188)(165 191 167 189)(166 190 168 192)
(1 115 3 113)(2 24 4 22)(5 44 7 42)(6 133 8 135)(9 23 11 21)(10 116 12 114)(13 27 15 25)(14 120 16 118)(17 31 19 29)(18 124 20 122)(26 106 28 108)(30 110 32 112)(33 93 35 95)(34 188 36 186)(37 98 39 100)(38 192 40 190)(41 102 43 104)(45 83 47 81)(46 174 48 176)(49 87 51 85)(50 178 52 180)(53 91 55 89)(54 182 56 184)(57 71 59 69)(58 162 60 164)(61 75 63 73)(62 166 64 168)(65 79 67 77)(66 170 68 172)(70 152 72 150)(74 156 76 154)(78 160 80 158)(82 138 84 140)(86 142 88 144)(90 146 92 148)(94 128 96 126)(97 130 99 132)(101 134 103 136)(105 119 107 117)(109 123 111 121)(125 187 127 185)(129 191 131 189)(137 173 139 175)(141 177 143 179)(145 181 147 183)(149 163 151 161)(153 167 155 165)(157 171 159 169)
G:=sub<Sym(192)| (1,109,105)(2,110,106)(3,111,107)(4,112,108)(5,192,188)(6,189,185)(7,190,186)(8,191,187)(9,17,13)(10,18,14)(11,19,15)(12,20,16)(21,29,25)(22,30,26)(23,31,27)(24,32,28)(33,41,37)(34,42,38)(35,43,39)(36,44,40)(45,53,49)(46,54,50)(47,55,51)(48,56,52)(57,65,61)(58,66,62)(59,67,63)(60,68,64)(69,77,73)(70,78,74)(71,79,75)(72,80,76)(81,89,85)(82,90,86)(83,91,87)(84,92,88)(93,102,98)(94,103,99)(95,104,100)(96,101,97)(113,121,117)(114,122,118)(115,123,119)(116,124,120)(125,133,129)(126,134,130)(127,135,131)(128,136,132)(137,145,141)(138,146,142)(139,147,143)(140,148,144)(149,157,153)(150,158,154)(151,159,155)(152,160,156)(161,169,165)(162,170,166)(163,171,167)(164,172,168)(173,181,177)(174,182,178)(175,183,179)(176,184,180), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64)(65,67)(66,68)(69,71)(70,72)(73,75)(74,76)(77,79)(78,80)(81,83)(82,84)(85,87)(86,88)(89,91)(90,92)(93,95)(94,96)(97,99)(98,100)(101,103)(102,104)(105,107)(106,108)(109,111)(110,112)(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)(126,128)(129,131)(130,132)(133,135)(134,136)(137,139)(138,140)(141,143)(142,144)(145,147)(146,148)(149,151)(150,152)(153,155)(154,156)(157,159)(158,160)(161,163)(162,164)(165,167)(166,168)(169,171)(170,172)(173,175)(174,176)(177,179)(178,180)(181,183)(182,184)(185,187)(186,188)(189,191)(190,192), (1,9)(2,10)(3,11)(4,12)(5,103)(6,104)(7,101)(8,102)(13,105)(14,106)(15,107)(16,108)(17,109)(18,110)(19,111)(20,112)(21,113)(22,114)(23,115)(24,116)(25,117)(26,118)(27,119)(28,120)(29,121)(30,122)(31,123)(32,124)(33,125)(34,126)(35,127)(36,128)(37,129)(38,130)(39,131)(40,132)(41,133)(42,134)(43,135)(44,136)(45,137)(46,138)(47,139)(48,140)(49,141)(50,142)(51,143)(52,144)(53,145)(54,146)(55,147)(56,148)(57,151)(58,152)(59,149)(60,150)(61,155)(62,156)(63,153)(64,154)(65,159)(66,160)(67,157)(68,158)(69,163)(70,164)(71,161)(72,162)(73,167)(74,168)(75,165)(76,166)(77,171)(78,172)(79,169)(80,170)(81,175)(82,176)(83,173)(84,174)(85,179)(86,180)(87,177)(88,178)(89,183)(90,184)(91,181)(92,182)(93,187)(94,188)(95,185)(96,186)(97,190)(98,191)(99,192)(100,189), (1,149)(2,150)(3,151)(4,152)(5,148)(6,145)(7,146)(8,147)(9,59)(10,60)(11,57)(12,58)(13,63)(14,64)(15,61)(16,62)(17,67)(18,68)(19,65)(20,66)(21,71)(22,72)(23,69)(24,70)(25,75)(26,76)(27,73)(28,74)(29,79)(30,80)(31,77)(32,78)(33,83)(34,84)(35,81)(36,82)(37,87)(38,88)(39,85)(40,86)(41,91)(42,92)(43,89)(44,90)(45,95)(46,96)(47,93)(48,94)(49,100)(50,97)(51,98)(52,99)(53,104)(54,101)(55,102)(56,103)(105,153)(106,154)(107,155)(108,156)(109,157)(110,158)(111,159)(112,160)(113,161)(114,162)(115,163)(116,164)(117,165)(118,166)(119,167)(120,168)(121,169)(122,170)(123,171)(124,172)(125,173)(126,174)(127,175)(128,176)(129,177)(130,178)(131,179)(132,180)(133,181)(134,182)(135,183)(136,184)(137,185)(138,186)(139,187)(140,188)(141,189)(142,190)(143,191)(144,192), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144)(145,146,147,148)(149,150,151,152)(153,154,155,156)(157,158,159,160)(161,162,163,164)(165,166,167,168)(169,170,171,172)(173,174,175,176)(177,178,179,180)(181,182,183,184)(185,186,187,188)(189,190,191,192), (1,127,3,125)(2,126,4,128)(5,170,7,172)(6,169,8,171)(9,35,11,33)(10,34,12,36)(13,39,15,37)(14,38,16,40)(17,43,19,41)(18,42,20,44)(21,47,23,45)(22,46,24,48)(25,51,27,49)(26,50,28,52)(29,55,31,53)(30,54,32,56)(57,83,59,81)(58,82,60,84)(61,87,63,85)(62,86,64,88)(65,91,67,89)(66,90,68,92)(69,95,71,93)(70,94,72,96)(73,100,75,98)(74,99,76,97)(77,104,79,102)(78,103,80,101)(105,131,107,129)(106,130,108,132)(109,135,111,133)(110,134,112,136)(113,139,115,137)(114,138,116,140)(117,143,119,141)(118,142,120,144)(121,147,123,145)(122,146,124,148)(149,175,151,173)(150,174,152,176)(153,179,155,177)(154,178,156,180)(157,183,159,181)(158,182,160,184)(161,187,163,185)(162,186,164,188)(165,191,167,189)(166,190,168,192), (1,115,3,113)(2,24,4,22)(5,44,7,42)(6,133,8,135)(9,23,11,21)(10,116,12,114)(13,27,15,25)(14,120,16,118)(17,31,19,29)(18,124,20,122)(26,106,28,108)(30,110,32,112)(33,93,35,95)(34,188,36,186)(37,98,39,100)(38,192,40,190)(41,102,43,104)(45,83,47,81)(46,174,48,176)(49,87,51,85)(50,178,52,180)(53,91,55,89)(54,182,56,184)(57,71,59,69)(58,162,60,164)(61,75,63,73)(62,166,64,168)(65,79,67,77)(66,170,68,172)(70,152,72,150)(74,156,76,154)(78,160,80,158)(82,138,84,140)(86,142,88,144)(90,146,92,148)(94,128,96,126)(97,130,99,132)(101,134,103,136)(105,119,107,117)(109,123,111,121)(125,187,127,185)(129,191,131,189)(137,173,139,175)(141,177,143,179)(145,181,147,183)(149,163,151,161)(153,167,155,165)(157,171,159,169)>;
G:=Group( (1,109,105)(2,110,106)(3,111,107)(4,112,108)(5,192,188)(6,189,185)(7,190,186)(8,191,187)(9,17,13)(10,18,14)(11,19,15)(12,20,16)(21,29,25)(22,30,26)(23,31,27)(24,32,28)(33,41,37)(34,42,38)(35,43,39)(36,44,40)(45,53,49)(46,54,50)(47,55,51)(48,56,52)(57,65,61)(58,66,62)(59,67,63)(60,68,64)(69,77,73)(70,78,74)(71,79,75)(72,80,76)(81,89,85)(82,90,86)(83,91,87)(84,92,88)(93,102,98)(94,103,99)(95,104,100)(96,101,97)(113,121,117)(114,122,118)(115,123,119)(116,124,120)(125,133,129)(126,134,130)(127,135,131)(128,136,132)(137,145,141)(138,146,142)(139,147,143)(140,148,144)(149,157,153)(150,158,154)(151,159,155)(152,160,156)(161,169,165)(162,170,166)(163,171,167)(164,172,168)(173,181,177)(174,182,178)(175,183,179)(176,184,180), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64)(65,67)(66,68)(69,71)(70,72)(73,75)(74,76)(77,79)(78,80)(81,83)(82,84)(85,87)(86,88)(89,91)(90,92)(93,95)(94,96)(97,99)(98,100)(101,103)(102,104)(105,107)(106,108)(109,111)(110,112)(113,115)(114,116)(117,119)(118,120)(121,123)(122,124)(125,127)(126,128)(129,131)(130,132)(133,135)(134,136)(137,139)(138,140)(141,143)(142,144)(145,147)(146,148)(149,151)(150,152)(153,155)(154,156)(157,159)(158,160)(161,163)(162,164)(165,167)(166,168)(169,171)(170,172)(173,175)(174,176)(177,179)(178,180)(181,183)(182,184)(185,187)(186,188)(189,191)(190,192), (1,9)(2,10)(3,11)(4,12)(5,103)(6,104)(7,101)(8,102)(13,105)(14,106)(15,107)(16,108)(17,109)(18,110)(19,111)(20,112)(21,113)(22,114)(23,115)(24,116)(25,117)(26,118)(27,119)(28,120)(29,121)(30,122)(31,123)(32,124)(33,125)(34,126)(35,127)(36,128)(37,129)(38,130)(39,131)(40,132)(41,133)(42,134)(43,135)(44,136)(45,137)(46,138)(47,139)(48,140)(49,141)(50,142)(51,143)(52,144)(53,145)(54,146)(55,147)(56,148)(57,151)(58,152)(59,149)(60,150)(61,155)(62,156)(63,153)(64,154)(65,159)(66,160)(67,157)(68,158)(69,163)(70,164)(71,161)(72,162)(73,167)(74,168)(75,165)(76,166)(77,171)(78,172)(79,169)(80,170)(81,175)(82,176)(83,173)(84,174)(85,179)(86,180)(87,177)(88,178)(89,183)(90,184)(91,181)(92,182)(93,187)(94,188)(95,185)(96,186)(97,190)(98,191)(99,192)(100,189), (1,149)(2,150)(3,151)(4,152)(5,148)(6,145)(7,146)(8,147)(9,59)(10,60)(11,57)(12,58)(13,63)(14,64)(15,61)(16,62)(17,67)(18,68)(19,65)(20,66)(21,71)(22,72)(23,69)(24,70)(25,75)(26,76)(27,73)(28,74)(29,79)(30,80)(31,77)(32,78)(33,83)(34,84)(35,81)(36,82)(37,87)(38,88)(39,85)(40,86)(41,91)(42,92)(43,89)(44,90)(45,95)(46,96)(47,93)(48,94)(49,100)(50,97)(51,98)(52,99)(53,104)(54,101)(55,102)(56,103)(105,153)(106,154)(107,155)(108,156)(109,157)(110,158)(111,159)(112,160)(113,161)(114,162)(115,163)(116,164)(117,165)(118,166)(119,167)(120,168)(121,169)(122,170)(123,171)(124,172)(125,173)(126,174)(127,175)(128,176)(129,177)(130,178)(131,179)(132,180)(133,181)(134,182)(135,183)(136,184)(137,185)(138,186)(139,187)(140,188)(141,189)(142,190)(143,191)(144,192), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144)(145,146,147,148)(149,150,151,152)(153,154,155,156)(157,158,159,160)(161,162,163,164)(165,166,167,168)(169,170,171,172)(173,174,175,176)(177,178,179,180)(181,182,183,184)(185,186,187,188)(189,190,191,192), (1,127,3,125)(2,126,4,128)(5,170,7,172)(6,169,8,171)(9,35,11,33)(10,34,12,36)(13,39,15,37)(14,38,16,40)(17,43,19,41)(18,42,20,44)(21,47,23,45)(22,46,24,48)(25,51,27,49)(26,50,28,52)(29,55,31,53)(30,54,32,56)(57,83,59,81)(58,82,60,84)(61,87,63,85)(62,86,64,88)(65,91,67,89)(66,90,68,92)(69,95,71,93)(70,94,72,96)(73,100,75,98)(74,99,76,97)(77,104,79,102)(78,103,80,101)(105,131,107,129)(106,130,108,132)(109,135,111,133)(110,134,112,136)(113,139,115,137)(114,138,116,140)(117,143,119,141)(118,142,120,144)(121,147,123,145)(122,146,124,148)(149,175,151,173)(150,174,152,176)(153,179,155,177)(154,178,156,180)(157,183,159,181)(158,182,160,184)(161,187,163,185)(162,186,164,188)(165,191,167,189)(166,190,168,192), (1,115,3,113)(2,24,4,22)(5,44,7,42)(6,133,8,135)(9,23,11,21)(10,116,12,114)(13,27,15,25)(14,120,16,118)(17,31,19,29)(18,124,20,122)(26,106,28,108)(30,110,32,112)(33,93,35,95)(34,188,36,186)(37,98,39,100)(38,192,40,190)(41,102,43,104)(45,83,47,81)(46,174,48,176)(49,87,51,85)(50,178,52,180)(53,91,55,89)(54,182,56,184)(57,71,59,69)(58,162,60,164)(61,75,63,73)(62,166,64,168)(65,79,67,77)(66,170,68,172)(70,152,72,150)(74,156,76,154)(78,160,80,158)(82,138,84,140)(86,142,88,144)(90,146,92,148)(94,128,96,126)(97,130,99,132)(101,134,103,136)(105,119,107,117)(109,123,111,121)(125,187,127,185)(129,191,131,189)(137,173,139,175)(141,177,143,179)(145,181,147,183)(149,163,151,161)(153,167,155,165)(157,171,159,169) );
G=PermutationGroup([[(1,109,105),(2,110,106),(3,111,107),(4,112,108),(5,192,188),(6,189,185),(7,190,186),(8,191,187),(9,17,13),(10,18,14),(11,19,15),(12,20,16),(21,29,25),(22,30,26),(23,31,27),(24,32,28),(33,41,37),(34,42,38),(35,43,39),(36,44,40),(45,53,49),(46,54,50),(47,55,51),(48,56,52),(57,65,61),(58,66,62),(59,67,63),(60,68,64),(69,77,73),(70,78,74),(71,79,75),(72,80,76),(81,89,85),(82,90,86),(83,91,87),(84,92,88),(93,102,98),(94,103,99),(95,104,100),(96,101,97),(113,121,117),(114,122,118),(115,123,119),(116,124,120),(125,133,129),(126,134,130),(127,135,131),(128,136,132),(137,145,141),(138,146,142),(139,147,143),(140,148,144),(149,157,153),(150,158,154),(151,159,155),(152,160,156),(161,169,165),(162,170,166),(163,171,167),(164,172,168),(173,181,177),(174,182,178),(175,183,179),(176,184,180)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64),(65,67),(66,68),(69,71),(70,72),(73,75),(74,76),(77,79),(78,80),(81,83),(82,84),(85,87),(86,88),(89,91),(90,92),(93,95),(94,96),(97,99),(98,100),(101,103),(102,104),(105,107),(106,108),(109,111),(110,112),(113,115),(114,116),(117,119),(118,120),(121,123),(122,124),(125,127),(126,128),(129,131),(130,132),(133,135),(134,136),(137,139),(138,140),(141,143),(142,144),(145,147),(146,148),(149,151),(150,152),(153,155),(154,156),(157,159),(158,160),(161,163),(162,164),(165,167),(166,168),(169,171),(170,172),(173,175),(174,176),(177,179),(178,180),(181,183),(182,184),(185,187),(186,188),(189,191),(190,192)], [(1,9),(2,10),(3,11),(4,12),(5,103),(6,104),(7,101),(8,102),(13,105),(14,106),(15,107),(16,108),(17,109),(18,110),(19,111),(20,112),(21,113),(22,114),(23,115),(24,116),(25,117),(26,118),(27,119),(28,120),(29,121),(30,122),(31,123),(32,124),(33,125),(34,126),(35,127),(36,128),(37,129),(38,130),(39,131),(40,132),(41,133),(42,134),(43,135),(44,136),(45,137),(46,138),(47,139),(48,140),(49,141),(50,142),(51,143),(52,144),(53,145),(54,146),(55,147),(56,148),(57,151),(58,152),(59,149),(60,150),(61,155),(62,156),(63,153),(64,154),(65,159),(66,160),(67,157),(68,158),(69,163),(70,164),(71,161),(72,162),(73,167),(74,168),(75,165),(76,166),(77,171),(78,172),(79,169),(80,170),(81,175),(82,176),(83,173),(84,174),(85,179),(86,180),(87,177),(88,178),(89,183),(90,184),(91,181),(92,182),(93,187),(94,188),(95,185),(96,186),(97,190),(98,191),(99,192),(100,189)], [(1,149),(2,150),(3,151),(4,152),(5,148),(6,145),(7,146),(8,147),(9,59),(10,60),(11,57),(12,58),(13,63),(14,64),(15,61),(16,62),(17,67),(18,68),(19,65),(20,66),(21,71),(22,72),(23,69),(24,70),(25,75),(26,76),(27,73),(28,74),(29,79),(30,80),(31,77),(32,78),(33,83),(34,84),(35,81),(36,82),(37,87),(38,88),(39,85),(40,86),(41,91),(42,92),(43,89),(44,90),(45,95),(46,96),(47,93),(48,94),(49,100),(50,97),(51,98),(52,99),(53,104),(54,101),(55,102),(56,103),(105,153),(106,154),(107,155),(108,156),(109,157),(110,158),(111,159),(112,160),(113,161),(114,162),(115,163),(116,164),(117,165),(118,166),(119,167),(120,168),(121,169),(122,170),(123,171),(124,172),(125,173),(126,174),(127,175),(128,176),(129,177),(130,178),(131,179),(132,180),(133,181),(134,182),(135,183),(136,184),(137,185),(138,186),(139,187),(140,188),(141,189),(142,190),(143,191),(144,192)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128),(129,130,131,132),(133,134,135,136),(137,138,139,140),(141,142,143,144),(145,146,147,148),(149,150,151,152),(153,154,155,156),(157,158,159,160),(161,162,163,164),(165,166,167,168),(169,170,171,172),(173,174,175,176),(177,178,179,180),(181,182,183,184),(185,186,187,188),(189,190,191,192)], [(1,127,3,125),(2,126,4,128),(5,170,7,172),(6,169,8,171),(9,35,11,33),(10,34,12,36),(13,39,15,37),(14,38,16,40),(17,43,19,41),(18,42,20,44),(21,47,23,45),(22,46,24,48),(25,51,27,49),(26,50,28,52),(29,55,31,53),(30,54,32,56),(57,83,59,81),(58,82,60,84),(61,87,63,85),(62,86,64,88),(65,91,67,89),(66,90,68,92),(69,95,71,93),(70,94,72,96),(73,100,75,98),(74,99,76,97),(77,104,79,102),(78,103,80,101),(105,131,107,129),(106,130,108,132),(109,135,111,133),(110,134,112,136),(113,139,115,137),(114,138,116,140),(117,143,119,141),(118,142,120,144),(121,147,123,145),(122,146,124,148),(149,175,151,173),(150,174,152,176),(153,179,155,177),(154,178,156,180),(157,183,159,181),(158,182,160,184),(161,187,163,185),(162,186,164,188),(165,191,167,189),(166,190,168,192)], [(1,115,3,113),(2,24,4,22),(5,44,7,42),(6,133,8,135),(9,23,11,21),(10,116,12,114),(13,27,15,25),(14,120,16,118),(17,31,19,29),(18,124,20,122),(26,106,28,108),(30,110,32,112),(33,93,35,95),(34,188,36,186),(37,98,39,100),(38,192,40,190),(41,102,43,104),(45,83,47,81),(46,174,48,176),(49,87,51,85),(50,178,52,180),(53,91,55,89),(54,182,56,184),(57,71,59,69),(58,162,60,164),(61,75,63,73),(62,166,64,168),(65,79,67,77),(66,170,68,172),(70,152,72,150),(74,156,76,154),(78,160,80,158),(82,138,84,140),(86,142,88,144),(90,146,92,148),(94,128,96,126),(97,130,99,132),(101,134,103,136),(105,119,107,117),(109,123,111,121),(125,187,127,185),(129,191,131,189),(137,173,139,175),(141,177,143,179),(145,181,147,183),(149,163,151,161),(153,167,155,165),(157,171,159,169)]])
66 conjugacy classes
class | 1 | 2A | ··· | 2G | 3A | 3B | 4A | ··· | 4N | 6A | ··· | 6N | 12A | ··· | 12AB |
order | 1 | 2 | ··· | 2 | 3 | 3 | 4 | ··· | 4 | 6 | ··· | 6 | 12 | ··· | 12 |
size | 1 | 1 | ··· | 1 | 1 | 1 | 4 | ··· | 4 | 1 | ··· | 1 | 4 | ··· | 4 |
66 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | - | ||||||||
image | C1 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | D4 | Q8 | C4○D4 | C3×D4 | C3×Q8 | C3×C4○D4 |
kernel | C3×C23.78C23 | C3×C2.C42 | C6×C4⋊C4 | Q8×C2×C6 | C23.78C23 | C2.C42 | C2×C4⋊C4 | C22×Q8 | C2×C12 | C2×C12 | C2×C6 | C2×C4 | C2×C4 | C22 |
# reps | 1 | 3 | 3 | 1 | 2 | 6 | 6 | 2 | 6 | 6 | 2 | 12 | 12 | 4 |
Matrix representation of C3×C23.78C23 ►in GL6(𝔽13)
9 | 0 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 3 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
1 | 11 | 0 | 0 | 0 | 0 |
1 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 7 | 0 | 0 |
0 | 0 | 3 | 2 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 12 | 0 |
5 | 0 | 0 | 0 | 0 | 0 |
5 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 8 | 0 | 0 |
0 | 0 | 2 | 10 | 0 | 0 |
0 | 0 | 0 | 0 | 10 | 4 |
0 | 0 | 0 | 0 | 4 | 3 |
5 | 0 | 0 | 0 | 0 | 0 |
0 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 11 | 0 | 0 |
0 | 0 | 0 | 8 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 12 | 0 |
G:=sub<GL(6,GF(13))| [9,0,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,3,0,0,0,0,0,0,3],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,1,0,0,0,0,11,12,0,0,0,0,0,0,11,3,0,0,0,0,7,2,0,0,0,0,0,0,0,12,0,0,0,0,1,0],[5,5,0,0,0,0,0,8,0,0,0,0,0,0,3,2,0,0,0,0,8,10,0,0,0,0,0,0,10,4,0,0,0,0,4,3],[5,0,0,0,0,0,0,5,0,0,0,0,0,0,5,0,0,0,0,0,11,8,0,0,0,0,0,0,0,12,0,0,0,0,1,0] >;
C3×C23.78C23 in GAP, Magma, Sage, TeX
C_3\times C_2^3._{78}C_2^3
% in TeX
G:=Group("C3xC2^3.78C2^3");
// GroupNames label
G:=SmallGroup(192,828);
// by ID
G=gap.SmallGroup(192,828);
# by ID
G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-2,168,365,176,1094,1059,142]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^3=b^2=c^2=d^2=1,e^2=f^2=g^2=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,b*d=d*b,f*e*f^-1=b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,g*e*g^-1=c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,g*f*g^-1=d*f=f*d,d*g=g*d>;
// generators/relations